

Processing statistical parameters of concentration along a river network

M.K. Kardos and L. Koncsos Budapest Univ. of Technology and Economics, Dpt. of Sanitary and Environmental Engineering Műegyetem rkp. 3., H-1111 Budapest, Hungary (E-mail: kardos@vkkt.bme.hu)

In-stream water quality modelling – state of the art

Driving forces of WQ modeling:

- contamination of waters (diffuse and point-sources)
- legislation (EU Directives, other international legislation,...)
- water uses (agricultural, domestic, industrial, recreational,...)
- scientific curiosity

Types of WQ models:

- the first step is always a hydrologic/ hydraulic model
- stochastic vs. process-based

Regular WQ monitoring in Hungary

Huge amount of data covering long period:

- ~ 50 years, > 1000 sampling sites, > 200 parameters
- Time-shift between adjacent sampling stations
 - Data can be used for modelling purposes:
 - long-term trends
 - regional patterns

No use of the database to model ranges of

Modelling concept

- "steady-state" modelling of water quality in large spatial scale for "average" situtation
- time variation accounted for with momentums (average, variance, covariances) of the time series
- make use of the regular monitoring data
- traditional parameters (BOD, DO, N, P)
- changes assigned to edges, mixing processes, diffuse and point-source loads and monit. points represented by nodes simplified process representation - second order second moment Legend approximation of equations Node: junction Node: sampling station Figure: graph representation Edge: river reach – – 🔶 🛛 Side branch of the river network -Wastewater inlet

Calibration/validation is problematic

- against extra measurements
- against another WQ model
- no calibration

Approximating the statistics

Edge process (settling):

edge (a section of a reach).

 $C_1 = C_0 \exp\left(-\frac{v_s}{H} t\right)$

where C_0 and C_1 – upstream and downstream concentration respectively, v_s –settling velocity, H – water depth and t - travel time along the river section.

 $C_1(C_0, Q) = C_0 \exp\left(k Q^{-\frac{5}{8}}\right)$ where *k* comprises the settling velocity, the roughness and the geometrical properties and is assumed to be constant along an

Second-order approximation for mean downstream concentration:

 $E(C_1) \approx E(C_0) \exp\left(k \left[E(Q)\right]^{-\frac{5}{8}}\right) + \frac{1}{2} \left(\frac{\partial^2 C_1}{\partial Q^2}\right)_{E(C_0), E(Q)} \cdot \sigma_H^2 + \left(\frac{\partial^2 C_1}{\partial C_0 \partial Q}\right)_{E(C_0), E(Q)}$ $\cdot \operatorname{cov}(Q, C_0)$

where E – expected value (mean value); σ_0^2 – variance of water flow and $cov(C_0, Q)$ – covariance between upstream concentration and water flow.

🛠 Sampling site since 2006

Vastewater outflow

concentrations in a longer time period with high spatial resolution!

Figure: Part of WQ monitoring network of Hungary

Tests

Test 1: synthetycally generated data

Input value	Range	Step	Units
Riverbank slope (φ)	15 45	15	deg
Riverbed slope (S)	10 ⁻⁵ 10 ⁻⁴	4.5	-
Manning's coefficient (k _{st})	10 40	10	m ^{1/3} s ⁻¹
Settling velocity (v _s)	0.1 10	*10	m d ⁻¹
Mean discharge $(E(Q))$	0.1 2000	-	m³ s⁻¹
Coefficient of variation for discharge $(\sigma(Q)/E(Q))$	0.2 1.5	-	-
Mean upstream concentration $(E(C_0))$	10.0 400	-	g m ⁻³
Coefficient of variation for concentration $(\sigma(C_0)/E(C_0))$	0.5 3.0	-	-
Discharge: parameter µ of logN random variables	-1 7	1	In(m ³ s ⁻¹)
Discharge: parameter σ of logN random variables	0.2 1	0.2	In(m ³ s ⁻¹)
Concentration: parameter μ of logN rand variables	2 5	1	ln(g m⁻³)
Concentration: parameter σ of logN rand variables	0.5 1.5	0.5	ln(g m⁻³)
Correlation coefficient r(Q,C ₀)	-0.2 0.8	0.2	-

Test 2: Measured upstream versus calculated downstream data

Results

Second-order approximation for standard deviation of downstream concentration:

 $\sigma^{2}(C_{1}) \approx \left[\overline{C_{0}} \exp\left(const_{2} Q^{-\frac{5}{8}}\right) - \overline{C_{1}}\right]^{2} + \frac{1}{2} \left(\frac{\partial^{2} f}{\partial C_{0}^{2}}\right)_{(\overline{C_{0}},\overline{Q})} \cdot \sigma^{2}(C_{0}) + \frac{1}{2} \left(\frac{\partial^{2} f}{\partial Q^{2}}\right)_{(\overline{Q},\overline{C_{0}})} \cdot \sigma^{2}(Q) + \left(\frac{\partial^{2} f}{\partial C_{0} \partial Q}\right)_{(\overline{C_{0}},\overline{Q})}$ $\cdot cov(C_0, Q)$ where $f = \left[C_0 \exp\left(const_2 Q^{-\frac{5}{8}}\right) - \overline{C_1}\right]^2$.

Second-order approximation for downstream correlation:

 $cov(Q,C_1) \approx \frac{1}{2} \left(\frac{\partial^2 g}{\partial C_0^2} \right)_{\overline{Q},\overline{C_0}} \cdot \sigma^2(C_0) + \frac{1}{2} \left(\frac{\partial^2 g}{\partial Q^2} \right)_{\overline{Q},\overline{C_0}} \cdot \sigma^2(Q) + \left(\frac{\partial^2 g}{\partial C_0 \partial Q} \right)_{\overline{Q},\overline{C_0}} \cdot cov(Q,C_0)$ where $g = \left(C_0 \exp\left(const_2 Q^{-\frac{5}{8}}\right) - \overline{C_1}\right)(Q - \overline{Q}).$

Node process (instant complete stirring):

$$C = \frac{Q_1 C_1 + Q_2 C_2}{Q_1 + Q_2} = h(Q_1, C_1, Q_2, C_2)$$

Mean of node outflow concentration:

$$\begin{split} E(C) &= \frac{\overline{Q_{1}} \,\overline{C_{1}} + \overline{Q_{2}} \,\overline{C_{2}}}{\overline{Q_{1}} + \overline{Q_{2}}} + \frac{\overline{C_{1}} - \overline{C_{2}}}{\left(\overline{Q_{1}} + \overline{Q_{2}}\right)^{3}} \left(\overline{Q_{1}} \,\sigma_{Q2}^{2} - \overline{Q_{2}} \,\sigma_{Q1}^{2}\right) + \\ &+ \frac{(\overline{C_{1}} - \overline{C_{2}}) \left(\overline{Q_{1}} - \overline{Q_{2}}\right)}{\left(\overline{Q_{1}} + \overline{Q_{2}}\right)^{3}} \cos(Q_{1}, Q_{2}) + \frac{\overline{Q_{2}}}{\left(\overline{Q_{1}} + \overline{Q_{2}}\right)^{2}} \cos(Q_{1}, C_{1}) + \\ &+ \frac{\overline{Q_{1}}}{\left(\overline{Q_{1}} + \overline{Q_{2}}\right)^{2}} \cos(Q_{2}, C_{2}) - \frac{\overline{Q_{2}}}{\left(\overline{Q_{1}} + \overline{Q_{2}}\right)^{2}} \cos(Q_{1}, C_{2}) - \frac{\overline{Q_{1}}}{\left(\overline{Q_{1}} + \overline{Q_{2}}\right)^{2}} \cos(Q_{2}, C_{1}) \end{split}$$

Variance of node outflow concentration: $\sigma^{2}(C) = \left(\frac{Q_{1}C_{1} + \overline{Q_{2}}\overline{C_{2}}}{\overline{C_{2}}} - \overline{C}\right)$ $\left(\frac{\partial^2 h}{\partial Q_1^2}\right)_{\overline{C_1},\overline{C_2},\overline{Q_1},\overline{Q_2}}$

- 35-years long series of water flow and total suspended solids (TSS), measured daily on the Zala river at Zalaapáti between 1978 – 2012.
- 350 randomly selected, one-year long sections of measured discharge-concentration data pairs were selected.
- Settling velocity and river geometry were determined randomly in the same range as in Test 1

Input value	Range	Units
Reach length (L)	100	km
Riverbank slope (φ)	26.5	deg
Riverbed slope (S)	10 ⁻⁶	-
Manning's coefficient (k _{st})	40	m ^{1/3} s ⁻¹
Settling velocity (v _s)	1	m d ⁻¹

Test 3: Measured upstream and downstream data

- upstream and downstream of Kis-Balaton Water Protection System
- 1998 2006

Input value	Value / Range	Units
Riverbank slope (φ)	11.3	deg
Riverbed slope (S)	10 ⁻⁶	-
Manning's coefficient (k _{st})	40	m ^{1/3} s ⁻¹
Settling velocity (v _s)	0.4 - 3.7	m d ⁻¹
Mean discharge $(E(Q))$	2.0 - 5.8	m³ s⁻¹
Coefficient of variation (CV) of discharge $(\sigma(Q)/E(Q))$	0.3 – 1.1	-
Mean upstream concentration $(E(C_0))$	11 – 65	g m ⁻³
CV of concentration $\sigma(C_0)/E(C_0)$	0.9 – 3.0	-
Correlation coefficient r(Q,C ₀)	-0.25 – 0.52	-
Observed mean downstream (ds) concentration $(E(C_1))$	2.9 – 7.8	g m ⁻³
Observed ds CV of concentration $(\sigma(C_1)/E(C_1))$	0.6 – 1.3	-

Figure: Errors of second-order approximations vs. errors of basic apx.

Results of Test 3:

		Std of downstream concentration					Correlation between conc & disch				
		Obs	Варх	Rerr of	Apx2	Rerr of	Obs	Us	Err of	Apx2	Err of
1	year	[g/m ³]	[g/m ³]	bapx	[g/m ³]	apx2	ds [-]	[-]	us	ds [-]	apx2
	1998	8	12	51%	12	56%	0.11	0.23	0.11	0.72	0.61
	1999	6	19	243%	11	98%	-0.04	0.28	0.33	0.56	0.60
	2000	4	4	-13%	5	7%	-0.09	0.12	0.21	0.51	0.60
	2001	8	6	-14%	7	-9%	0.08	0.52	0.43	0.64	0.56
	2002	7	18	155%	19	182%	-0.47	-0.26	0.21	-0.19	0.27
	2003	5	9	70%	11	110%	-0.19	-0.20	-0.01	0.06	0.25
	2004	5	12	118%	9	66%	0.27	0.31	0.04	0.67	0.40
	2005	2	8	259%	5	121%	0.03	0.20	0.17	0.62	0.59
	2006	2	8	401%	3	97%	0.13	0.20	0.07	0.82	0.69

Conclusions

- The method can be considered as satisfactory in estimating downstream mean and variance.
- In almost all cases, relative error of the second-order approximation of mean downstream concentration remained very low.
- It performed well on both generated lognormal and measured data, compared to "basic" approximations.
- The approximated amounts were close to "true" values.
- Significant improvement in approximation of the mean downstream concentration
- In most cases, relative error of the second-order approximation of standard deviation of downstream concentration remained below 10%.
- Relative errors associated with smaller standard deviations sometimes remained high
- Approximation was unsatisfactory compared to downstream measurements, which indicates the need for more detailed description of the in-stream processes.

Next steps

- More detailed description of the in-stream process.
- Test on other WQ components
- Investigation of second-momentum approximations of formulas more capable to describe complex in-steam processes
- Further ivestigation needed for
 - node processes \bullet
 - resuspension
 - diffuse pollution and/or continuos discharge-increment