

Modelling of nutrient emission in river systems (MONERIS): Presenting new perspectives and current developments of a widely used emission model

Oprei, Anna; Huk, Victoria & Venohr, Markus Wednesday, June 5, 2024, 09:00 AM

Example for data collection

Landuse

Year	Europe	EU27	GER	
2010	GLOBE- CORINE 2012			
2011		CORINE 2012	LBM 2012	
2012				
2013				
2014				
2015			LBM 2015	
2016		CORINE 2018		
2017			I BM 2018	
2018				
2019				
2020				

Connection to sewer and WWTP

Year	Europe	GER	Berlin
2010			
2011			
2012			
2013			
2014	annual data		annual data,
2015		municipality	house block
2016	country level	level	level
2017			
2018			
2019			
2020			

• Heterogeneous input data cause inconsistencies in spatial overlapping

- Heterogeneous input data cause inconsistencies in spatial overlapping
- Spatial resolution of input data ranges between:
 - Polygons: 1:25.000 1:1.000.000
 - Raster: 10 m 10 km
- MONERIS calculates on the basis of hydrological sub catchments (polygons can be better integrated in data and programming structure of the model)
- Modelling of retention and nutrient loads is still done on level of hydrological sub catchments

- Heterogeneous input data cause inconsistencies in spatial overlapping
- Spatial resolution of input data ranges between:
 - Polygons: 1:25.000 1:1.000.000
 - Raster: 10 m 10 km
- MONERIS calculates on the basis of hydrological sub catchments (polygons can be better integrated in data and programming structure of the model)
- Modelling of retention and nutrient loads is still done on level of hydrological sub catchments

- Heterogeneous input data cause inconsistencies in spatial overlapping
- Spatial resolution of input data ranges between:
 - Polygons: 1:25.000 1:1.000.000
 - Raster: 10 m 10 km
- MONERIS calculates on the basis of hydrological sub catchments (polygons can be better integrated in data and programming structure of the model)
- Modelling of retention and nutrient loads is still done on level of hydrological sub catchments

Model Extent -> Fractal Grids 100 km

- Heterogeneous input data cause inconsistencies in spatial overlapping
- Spatial resolution of input data ranges between:
 - Polygons: 1:25.000 1:1.000.000
 - Raster: 10 m 10 km
- MONERIS calculates on the basis of hydrological sub catchments (polygons can be better integrated in data and programming structure of the model)
- Modelling of retention and nutrient loads is still done on level of hydrological sub catchments

Basic concept of P-R-Model

Snow coverage, snow melt = $f(max(T_{mean}))$

Evapotranspiration (ET) according to MODIS

Surface runoff: CN values according to Jafaar et al. (2019), slope correction, soil moisture based on soil water volume balance

-> selection of CN values based on antecedent runoff conditions (ARC)

Interflow = f(usable field capacity, slope, tile drainage
coverage, soil water content of deeper layers)
-> Capillary rise is limited by water content of deeper

Groundwater

soil layers

Permeability and water storage capacity according to geohydrological classes

Case Study: Odra River Basin (total area 119,000 km²)

Runoff model validation – Model efficiency for each station

Observed data:

- separate measured direct runoff and baseflow via hydropgraph separation (WMO) (R-package: lftstat)
- allocate 1 km grid cells to catchment area of gauge (criterion: area share > 50 %)
- calibrate against observed runoff data from 11 independent upstream gauges:
 - Direct runoff (modelled vs observed)
 - Tile drainage interflow (modelled vs observed)
 - Baseflow (modelled vs observed)
- validate by runoff data from 36 additional gauges
 (2010-2020)

Total runoff	MAD (mm)	PBIAS (%)	NSE (mm)
Monthly	176.9	2.70	0.89
Yearly	96.5	-10.9	0.22
All-time	40.6	-11.0	0.60

Runoff model validation – Model efficiency for each station

Observed data:

- separate measured direct runoff and baseflow via hydropgraph separation (WMO) (R-package: Iftstat)
- allocate 1 km grid cells to catchment area of gauge (criterion: area share > 50 %)
- calibrate against observed runoff data from 11 independent upstream gauges:
 - Direct runoff (modelled vs observed)
 - Tile drainage interflow (modelled vs observed)
 - Baseflow (modelled vs observed)
- validate by runoff data from 36 additional gauges (2010-2020)

Total runoff	MAD (mm)	PBIAS (%)	NSE (mm)	NSE (m ³ s ⁻¹)
Monthly	176.9	2.70	0.89	0.79
Yearly	96.5	-10.9	0.22	0.97
All-time	40.6	-11.0	0.60	0.97

Case study: Odra River Basin, annual means 2010-2020

Case study: Odra River Basin, annual means 2010-2020

Case study: Odra River Basin, means 2010-2020, total runoff [mm]

Case Study: River basins in Germany (total area 743,646 km²)

Case study: Germany, total runoff [mm]

June 2015

Case study: Germany, TN emissions from atmospheric deposition [kg ha⁻¹]

November 2015

April 2015

30 31.05.2024 Oprei, A., Huk, V. & Venohr, M.: Modelling of nutrient emission in river systems (MONERIS): Presenting new perspectives and current developments of a widely used emission model

Case study: Germany, TN emissions from surface runoff [kg ha⁻¹]

March 2015

August 2015

31 01.06.2024 Oprei, A., Huk, V. & Venohr, M.: Modelling of nutrient emission in river systems (MONERIS): Presenting new perspectives and current developments of a widely used emission model

Case Study Ukraine: Modelling denitrification in inundated soils

 $D = pD \cdot fpH \cdot fT \cdot fCS \cdot fNO3 \cdot Fd$

- D = modelled denitrification of riverine NO3, in kg/ha/yr
- pD = potential Denitrification
- fpH = reduction function for top soil pH
- fT = temperature
- fCS = clay and silt content
- fNO_3 = mean NO_3 concentration in water
- Fd = mean annual flooding duration

Tschikof et al. (2022): <u>https://doi.org/10.1016/j.scitotenv.2022.156879</u>

Potential Denitrifaction in Soils

33

Reduktionfactor for pH due to increased pH values

 $fpH = e^{-(pH-7.25)^{\frac{2}{3}}}$

fpH: pH dependent reduction factor [-] pH: pH value in soil water

(Heinen, 2006)

^{34 01.06.2024} Oprei, A., Huk, V. & Venohr, M.: Modelling of nutrient emission in river systems (MONERIS): Presenting new perspectives and current developments of a widely used emission model

Reduction function due to low mean annual temperatures

(Heinen, 2006)

 $fT = 2^{\frac{T-16}{10}}$

Reduction function due to coarser soil structure

Adaption function according to changing riverine NO₃ concentrations and local elevation

 $fNO_3 = \frac{N}{K+N}$

 $Fd = -70.559 \ln(z + 0.50) + 88.711$

fNO₃: riverine concentration adaption factor, without unit

N: NO₃ concentration in mgL⁻¹

K: constant reference concentration (7.2 mgL⁻¹)

 $fNO_3 = 0.33$ (for N = 3.5 mgL⁻¹) $fNO_3 = 0.49$ (for N = 7 mgL⁻¹) Fd: adaption factor due to flooding frequency, without unitz: elevation relative to mean water level in m

Needs to be calibrated for local conditions.

In case of Kakhovka dam breach flooding frequency does not have to be derived.

(Schleuter, 2016)

(Heinen, 2006; Ghane, Fausey and Brown, 2015)

Modelled denitrification of riverine NO₃ in inundated areas

Variable denitrification rates

•Warsaw "Warsaw 3.5 mgL⁻¹ Riverine NO₃ concentration MOLDOV MOLDOV ROMANIA ROMANIA Bucharest= Bucharest= *Warsaw .Warsaw mgL⁻¹ MOLDOV MOLDOV ROMANIA ROMANIA Bucharest* Bucharest*

Mean annual air temperature in 2019

Mean air temperature in June 2019

0.00 - 0.05 0.05 - 0.10 0.10 - 0.20 0.20 - 0.30 0.30 - 0.40 0.40 - 0.50 0.50 - 0.60 0.60 - 0.70 0.70 - 0.80 0.80 - 1.50 1.50 - 2.50 $2.50 - \ln f$

Comparison with globally monitored denitrification rates

Pan et al. (2022), https://doi.org/10.1016/j.agee.2021.107850

Showcase examples...

What next?

Odra river

German river basins

Ukraine

- Incorporate phytoplankton, floodplain and groyne field retention •
- Allow modelling of other substances (e.g. salinity, heavy metals or priority • substances) **TN emissions from** Monthly total runoff
- **Develop an open modelling platform**

surface runoff

Denitrification rates

Thank you for your attention!

Contact: anna.oprei@igb-berlin.de, markus.venohr@igb-berlin.de

