

www.waterandhealth.at

Predicting levels of microorganisms and viruses in river Danube water resources with a lumped hydrological water quality and infection risk model

Derx J^{1,6}, Schijven J², Sommer R^{3,6}, Zoufal-Hruza CM⁴, Reischer G^{1,6}, Kirschner A^{3,6}, Frick C⁴, Farnleitner AH^{1,5,6} & Blaschke AP^{1,6}

⁶Interuniversity Cooperation Centre for Water and Health, www.waterandhealth.at

¹TU WIEN, 1060 Vienna, Austria

² Netherlands Institute of Public Health, Bilthoven, Netherlands

³ Medical University of Vienna, 1090 Vienna, Austria

⁴ Laboratories of Environmental Medicine, MA39, 1080 Vienna, Austria

⁵ Karl Landsteiner University for Health Sciences, Krems, Austria

Overview

Background & Idea

QMRAcatch: the current modules

Case study: River Danube & Backwater

Conclusion & perspectives

Challenges of Water Safety Management in the 21st century

"Whole system approach"

e.g. "water safety plan principle"

- → System Assessment/System Design
 - Integrated use of **best available information/techniques**
 - Need for modelling tools of catchment microbial transport
- → Sanitation safety plans, Water Wise Cities, etc..

The idea of the QMRAcatch modelling tool:

- → <u>Catchment-based</u> microbial water quality & health risk simulations "from the fecal pollution source(s) to the exposed human population"
- → Status quo & (future) scenarios
 - → understand the system
 - → sustainable decision making & risk management
- → Integrated use of best-available quantitative information
 - → site- & habitat-specific field data
 - → data from online data basis and literature (e.g. GWPP)

Overview

Background & Idea

QMRAcatch: the current modules

Case study: River Danube & Backwater

Conclusion & perspectives

...a catchment-related microbial water quality simulation tool

Schijven, J, Derx, J., De Roda Husman, A.M., Blaschke, A.P. & Farnleitner AH (2015) QMRAcatch - Microbial quality simulation of water resources including infection risk assessment. *J. Environ. Qual.* **44(**5): 1491-1502

Model components: Water system

- Size of water system compartments is set by user
- Water system components treated as homogeneous systems
- Time step: 1 day, simulation time: 1 year

Model components: Contamination system, process variables

FMP: Indicators & pathogens - *E.coli*

- human-assoc. MST-marker
- Enterovirus
- Norovirus

Human

- Campylobacter
- Cryptosporidium
- Giardia

Zoonotic

Model components:

Usage, quantitative microbial risk assessment (QMRA)

- to evaluate/guide catchment-management

Officially launched at the World Water Conference Brisbane, 2016

Free download links:

www.waterandhealth.at

Enterovirus

LMH 0

LMH 0

NL US WHO Set

Health based target 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻²

Plot scale @ Lin Log

Mean(CI) 0.28(0.019- 1.3 μ -1.85779

1 2 3 4 5

www.rivm.nl/en/Topics/W/
WHO_Collaborating_Centre_
Risk_Assessment_of_Pathogens
in Food and Water/Tools

Home | Contamination sources | Water system | QMRA drinking water | QMRA bathing water | About

FLOODPLAIN RIVER

Infiltration

BIRDS

HUMAN

HUMAN

ANIMAL

Settings+simulations

Settings+simulations

Hydrologic data

FLOODPLAIN

Simulation of microbial river water quality, including QMRA

Riverbank

filtration

GROUNDWATER

QMRA

bathing water

drinking water

Load

Load

- + Quick User Guide
- + **Example spreadsheets** of settings, simulations, microbiological and hydrological data
- + Weblinks to Free CDF Player Download

Input variables and model use

status quo

(exposure-doseresponse model)

Multiple levels of microbial data

fecal indicator(s)

microbial source tracking marker(s)

reference pathogens

measured assumed

(source-concentrations)

calibration ---- verification -- (hydrological model) (hydrological model)

Hydrological model

6	Enterovirus	Enterovirus		
	Target	0.0001		
l	Mean	1.3×10-6		
	95%	2.×10 ⁻⁶		
	Removal	0. log10		
_	deficit (95%)			
_	Norovirus			
	Target	0.0001		
	Mean	0.0018		
Н	95%	0.0026		
т	Removal	1.4 log10		
	deficit (95%)			
F	Commission	tar.		
_	Campylobac	rei		
Π	Target	0.0001		
		0.0001		
	Target	0.0001 9.8×10 ⁻⁶		
	Target Mean	0.0001 9.8×10 ⁻⁶ 0.000013		
	Target Mean 95%	0.0001 9.8×10 ⁻⁶		
	Target Mean 95% Removal	0.0001 9.8×10 ⁻⁶ 0.000013 0. log ₁₀		
	Target Mean 95% Removal deficit (95%)	0.0001 9.8×10 ⁻⁶ 0.000013 0. log ₁₀		
	Target Mean 95% Removal deficit (95%) Cryptosporid	0.0001 9.8×10 ⁻⁶ 0.000013 0. log ₁₀		
	Target Mean 95% Removal deficit (95%) Cryptosporid Target	0.0001 9.8×10 ⁻⁶ 0.000013 0. log ₁₀ ium 0.0001 1.4×10 ⁻⁶ 2.4×10 ⁻⁶		
	Target Mean 95% Removal deficit (95%) Cryptosporid Target Mean	0.0001 9.8×10 ⁻⁶ 0.000013 0. log ₁₀ lium 0.0001 1.4×10 ⁻⁶		

The concept

Step 1: Simulate concentrations in surface water (raw water) from source concentrations (hydrological model)

The concept

Step 2: exposure assessment, dose-response modelling, risk characterisation & required treatment

Overview

Background & Idea

QMRAcatch: the current modules

Case study: River Danube & Backwater

Conclusion & perspectives

Study site & model domain

Extent of model domain:

I to II along the Danube

in the floodplain

Aims

- 1) Simulate human faecal pollution in a river-floodplain area
- 2) Use human-associated MST marker to support sourcespecific model calibration
- 3) Evaluate sustainable virus-reduction targets required for riverbank filtration & disinfection (10⁻⁴ infec. person⁻¹ year⁻¹)
 - → different <u>future scenarios</u> in the catchment
 - → hydrology, wastewater disposal, epidemiology

Considered "fecal pollution" scenarios

1) current situation, 2) good case, 3) bad case

Hydrology & Waste Water Treatment Variables (Main River)

- wettest & driest hydrological years (since 1996)
- virus removal by WWTP (5 to 0 log₁₀ reduction)

Floodplain Variables

- visitor numbers to floodplain (650 persons to 1700 person /d*)
- excretion probability of visitors $(10^{-4} 1 \text{ per person})$

Viral Epidemiology and Release

- viral prevalence (0.01 0.15 per person**)
- viral release rate from faecal products (0.005 0.5 per d)

Microbial data availability & use

Microbial targets	Hydrological model calibration	Hydrological model verification	Risk assessment & log-reduction
E.coli			
human- associated fecal marker*	Yes 2012	Yes 2013	
Enterovirus		Yes, 2012+13	Yes 2010 - 2015
Norovirus			Yes, but source concentrations assumed from literature

Hydrological model calibration

observed vs. simulated cummulated concentration frequencies (over one year)

maximum deviation of $0.4 \log_{10}$ (simulated minus observed)

observed

simulated

Minimum detection limit data below detection limit

Hydrological model verification

maximum deviation of 0.6 log₁₀ (simulated-observed)

Simulated pathogen concentrations in the Danube and the floodplain river (95% percentiles) – Step 1

N/L	Current	Good	Bad
Danube PI			
Enterovirus	1	1×10 ⁻⁴	11
Norovirus	51	5×10 ⁻³	500
Floodplain- river Pl			
Enterovirus	0.1	1×10 ⁻⁶	630
Norovirus	14	1×10 ⁻⁴	720

Estimated numbers of pathogens per litre

Simulated log_{10} -reduction requirements by RBF* and disinfection (95% percentiles) to reach drinking water quality ($\leq 10^{-4}$ infections p⁻¹ y⁻¹) – Step 2

Log ₁₀	Current	Good	Bad
Danube PI			
Enterovirus	4.5	2.1	5.7
Norovirus	6.6	4.3	8.2
Floodplain river Pl			
Enterovirus	3.6	0.0	7.7
Norovirus	5.7	1.1	7.8

Overview

Background & Idea

QMRAcatch: the current modules

Case study: River Danube & Backwater

Conclusion & perspectives

Conclusion: "River Danube PI"

Successful **calibration/verification** of the hydrological model based on **human-associated MST marker** & enterovirus data

Successful combination of microbial source tracking (MST) & microbial risk assessment (QMRA)

Sustainable reduction targets for human viruses during

 river bank filtration and subsequent disinfection (bad case and good case scenarios)

Perspective & Outlook

Extend to other compartments

- karst module
- urban module, etc.

Include other **MST-markers** & **pathogens**

- host-associated & specific MST-marker
- other zoonotic pathogens, etc.

Expand to other <u>exposure scenarios</u>

- recreation (not only swimming)
- irrigation
- wastewater reuse

Thank you!

References:

Schijven, J. F., J. Derx, A. M. de Roda Husman, A. P. Blaschke, A. H. Farnleitner. 2015. **QMRAcatch: Microbial quality simulation of water resources including infection risk assessment.** *J. Env. Qual.* **44(**5): 1491-1502

Derx, J., J. Schijven, R. Sommer, C. M. Zoufal-Hruza, Inge v. Driezum, G. Reischer, S. Ixenmaier, A. Kirschner, C. Frick, A. H. Farnleitner, A. P. Blaschke. 2016: **QMRAcatch:** human-associated faecal pollution and infection risk modeling of water resources in a river-floodplain environment *J. Env. Qual.* **45**(4):1205-14

www.waterandhealth.at

MIT UNTERSTÜTZUNG VON BUND, LAND WIEN UND EUROPÄISCHER UNION

